3.206 \(\int \frac{(d+c^2 d x^2) (a+b \sinh ^{-1}(c x))^2}{x^4} \, dx\)

Optimal. Leaf size=158 \[ -\frac{5}{3} b^2 c^3 d \text{PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )+\frac{5}{3} b^2 c^3 d \text{PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )-\frac{b c d \sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )}{3 x^2}-\frac{d \left (c^2 x^2+1\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x^3}-\frac{2 c^2 d \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x}-\frac{10}{3} b c^3 d \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )-\frac{b^2 c^2 d}{3 x} \]

[Out]

-(b^2*c^2*d)/(3*x) - (b*c*d*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x]))/(3*x^2) - (2*c^2*d*(a + b*ArcSinh[c*x])^2)
/(3*x) - (d*(1 + c^2*x^2)*(a + b*ArcSinh[c*x])^2)/(3*x^3) - (10*b*c^3*d*(a + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh
[c*x]])/3 - (5*b^2*c^3*d*PolyLog[2, -E^ArcSinh[c*x]])/3 + (5*b^2*c^3*d*PolyLog[2, E^ArcSinh[c*x]])/3

________________________________________________________________________________________

Rubi [A]  time = 0.393379, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 8, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {5739, 5661, 5760, 4182, 2279, 2391, 5737, 30} \[ -\frac{5}{3} b^2 c^3 d \text{PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )+\frac{5}{3} b^2 c^3 d \text{PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )-\frac{b c d \sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )}{3 x^2}-\frac{d \left (c^2 x^2+1\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x^3}-\frac{2 c^2 d \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x}-\frac{10}{3} b c^3 d \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )-\frac{b^2 c^2 d}{3 x} \]

Antiderivative was successfully verified.

[In]

Int[((d + c^2*d*x^2)*(a + b*ArcSinh[c*x])^2)/x^4,x]

[Out]

-(b^2*c^2*d)/(3*x) - (b*c*d*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x]))/(3*x^2) - (2*c^2*d*(a + b*ArcSinh[c*x])^2)
/(3*x) - (d*(1 + c^2*x^2)*(a + b*ArcSinh[c*x])^2)/(3*x^3) - (10*b*c^3*d*(a + b*ArcSinh[c*x])*ArcTanh[E^ArcSinh
[c*x]])/3 - (5*b^2*c^3*d*PolyLog[2, -E^ArcSinh[c*x]])/3 + (5*b^2*c^3*d*PolyLog[2, E^ArcSinh[c*x]])/3

Rule 5739

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[((f*x)^(m + 1)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n)/(f*(m + 1)), x] + (-Dist[(2*e*p)/(f^2*(m + 1)), Int[(f*x
)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p
])/(f*(m + 1)*(1 + c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n -
1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]

Rule 5661

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcS
inh[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt
[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5760

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[1/(c^(m
 + 1)*Sqrt[d]), Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[
e, c^2*d] && GtQ[d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 5737

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
(f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n)/(f*(m + 1)), x] + (-Dist[(b*c*n*Sqrt[d + e*x^2])/(f*(m +
 1)*Sqrt[1 + c^2*x^2]), Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x] - Dist[(c^2*Sqrt[d + e*x^2])/(f
^2*(m + 1)*Sqrt[1 + c^2*x^2]), Int[((f*x)^(m + 2)*(a + b*ArcSinh[c*x])^n)/Sqrt[1 + c^2*x^2], x], x]) /; FreeQ[
{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[m, -1]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \frac{\left (d+c^2 d x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{x^4} \, dx &=-\frac{d \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x^3}+\frac{1}{3} (2 b c d) \int \frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{x^3} \, dx+\frac{1}{3} \left (2 c^2 d\right ) \int \frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{x^2} \, dx\\ &=-\frac{b c d \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 x^2}-\frac{2 c^2 d \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x}-\frac{d \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x^3}+\frac{1}{3} \left (b^2 c^2 d\right ) \int \frac{1}{x^2} \, dx+\frac{1}{3} \left (b c^3 d\right ) \int \frac{a+b \sinh ^{-1}(c x)}{x \sqrt{1+c^2 x^2}} \, dx+\frac{1}{3} \left (4 b c^3 d\right ) \int \frac{a+b \sinh ^{-1}(c x)}{x \sqrt{1+c^2 x^2}} \, dx\\ &=-\frac{b^2 c^2 d}{3 x}-\frac{b c d \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 x^2}-\frac{2 c^2 d \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x}-\frac{d \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x^3}+\frac{1}{3} \left (b c^3 d\right ) \operatorname{Subst}\left (\int (a+b x) \text{csch}(x) \, dx,x,\sinh ^{-1}(c x)\right )+\frac{1}{3} \left (4 b c^3 d\right ) \operatorname{Subst}\left (\int (a+b x) \text{csch}(x) \, dx,x,\sinh ^{-1}(c x)\right )\\ &=-\frac{b^2 c^2 d}{3 x}-\frac{b c d \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 x^2}-\frac{2 c^2 d \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x}-\frac{d \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x^3}-\frac{10}{3} b c^3 d \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )-\frac{1}{3} \left (b^2 c^3 d\right ) \operatorname{Subst}\left (\int \log \left (1-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )+\frac{1}{3} \left (b^2 c^3 d\right ) \operatorname{Subst}\left (\int \log \left (1+e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )-\frac{1}{3} \left (4 b^2 c^3 d\right ) \operatorname{Subst}\left (\int \log \left (1-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )+\frac{1}{3} \left (4 b^2 c^3 d\right ) \operatorname{Subst}\left (\int \log \left (1+e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )\\ &=-\frac{b^2 c^2 d}{3 x}-\frac{b c d \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 x^2}-\frac{2 c^2 d \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x}-\frac{d \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x^3}-\frac{10}{3} b c^3 d \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )-\frac{1}{3} \left (b^2 c^3 d\right ) \operatorname{Subst}\left (\int \frac{\log (1-x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )+\frac{1}{3} \left (b^2 c^3 d\right ) \operatorname{Subst}\left (\int \frac{\log (1+x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )-\frac{1}{3} \left (4 b^2 c^3 d\right ) \operatorname{Subst}\left (\int \frac{\log (1-x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )+\frac{1}{3} \left (4 b^2 c^3 d\right ) \operatorname{Subst}\left (\int \frac{\log (1+x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )\\ &=-\frac{b^2 c^2 d}{3 x}-\frac{b c d \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 x^2}-\frac{2 c^2 d \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x}-\frac{d \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2}{3 x^3}-\frac{10}{3} b c^3 d \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )-\frac{5}{3} b^2 c^3 d \text{Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )+\frac{5}{3} b^2 c^3 d \text{Li}_2\left (e^{\sinh ^{-1}(c x)}\right )\\ \end{align*}

Mathematica [A]  time = 0.793836, size = 245, normalized size = 1.55 \[ -\frac{d \left (-5 b^2 c^3 x^3 \text{PolyLog}\left (2,-e^{-\sinh ^{-1}(c x)}\right )+5 b^2 c^3 x^3 \text{PolyLog}\left (2,e^{-\sinh ^{-1}(c x)}\right )+3 a^2 c^2 x^2+a^2+a b c x \sqrt{c^2 x^2+1}+6 a b c^2 x^2 \sinh ^{-1}(c x)+5 a b c^3 x^3 \tanh ^{-1}\left (\sqrt{c^2 x^2+1}\right )+2 a b \sinh ^{-1}(c x)+b^2 c^2 x^2+3 b^2 c^2 x^2 \sinh ^{-1}(c x)^2+b^2 c x \sqrt{c^2 x^2+1} \sinh ^{-1}(c x)-5 b^2 c^3 x^3 \sinh ^{-1}(c x) \log \left (1-e^{-\sinh ^{-1}(c x)}\right )+5 b^2 c^3 x^3 \sinh ^{-1}(c x) \log \left (e^{-\sinh ^{-1}(c x)}+1\right )+b^2 \sinh ^{-1}(c x)^2\right )}{3 x^3} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d + c^2*d*x^2)*(a + b*ArcSinh[c*x])^2)/x^4,x]

[Out]

-(d*(a^2 + 3*a^2*c^2*x^2 + b^2*c^2*x^2 + a*b*c*x*Sqrt[1 + c^2*x^2] + 2*a*b*ArcSinh[c*x] + 6*a*b*c^2*x^2*ArcSin
h[c*x] + b^2*c*x*Sqrt[1 + c^2*x^2]*ArcSinh[c*x] + b^2*ArcSinh[c*x]^2 + 3*b^2*c^2*x^2*ArcSinh[c*x]^2 + 5*a*b*c^
3*x^3*ArcTanh[Sqrt[1 + c^2*x^2]] - 5*b^2*c^3*x^3*ArcSinh[c*x]*Log[1 - E^(-ArcSinh[c*x])] + 5*b^2*c^3*x^3*ArcSi
nh[c*x]*Log[1 + E^(-ArcSinh[c*x])] - 5*b^2*c^3*x^3*PolyLog[2, -E^(-ArcSinh[c*x])] + 5*b^2*c^3*x^3*PolyLog[2, E
^(-ArcSinh[c*x])]))/(3*x^3)

________________________________________________________________________________________

Maple [A]  time = 0.238, size = 278, normalized size = 1.8 \begin{align*} -{\frac{{c}^{2}d{a}^{2}}{x}}-{\frac{d{a}^{2}}{3\,{x}^{3}}}-{\frac{{c}^{2}d{b}^{2} \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}}{x}}-{\frac{cd{b}^{2}{\it Arcsinh} \left ( cx \right ) }{3\,{x}^{2}}\sqrt{{c}^{2}{x}^{2}+1}}-{\frac{d{b}^{2} \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}}{3\,{x}^{3}}}-{\frac{{c}^{2}d{b}^{2}}{3\,x}}-{\frac{5\,{c}^{3}d{b}^{2}{\it Arcsinh} \left ( cx \right ) }{3}\ln \left ( 1+cx+\sqrt{{c}^{2}{x}^{2}+1} \right ) }-{\frac{5\,{c}^{3}d{b}^{2}}{3}{\it polylog} \left ( 2,-cx-\sqrt{{c}^{2}{x}^{2}+1} \right ) }+{\frac{5\,{c}^{3}d{b}^{2}{\it Arcsinh} \left ( cx \right ) }{3}\ln \left ( 1-cx-\sqrt{{c}^{2}{x}^{2}+1} \right ) }+{\frac{5\,{c}^{3}d{b}^{2}}{3}{\it polylog} \left ( 2,cx+\sqrt{{c}^{2}{x}^{2}+1} \right ) }-2\,{\frac{{c}^{2}dab{\it Arcsinh} \left ( cx \right ) }{x}}-{\frac{2\,dab{\it Arcsinh} \left ( cx \right ) }{3\,{x}^{3}}}-{\frac{5\,{c}^{3}dab}{3}{\it Artanh} \left ({\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}} \right ) }-{\frac{cdab}{3\,{x}^{2}}\sqrt{{c}^{2}{x}^{2}+1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c^2*d*x^2+d)*(a+b*arcsinh(c*x))^2/x^4,x)

[Out]

-c^2*d*a^2/x-1/3*d*a^2/x^3-c^2*d*b^2*arcsinh(c*x)^2/x-1/3*c*d*b^2/x^2*arcsinh(c*x)*(c^2*x^2+1)^(1/2)-1/3*d*b^2
/x^3*arcsinh(c*x)^2-1/3*b^2*c^2*d/x-5/3*c^3*d*b^2*arcsinh(c*x)*ln(1+c*x+(c^2*x^2+1)^(1/2))-5/3*b^2*c^3*d*polyl
og(2,-c*x-(c^2*x^2+1)^(1/2))+5/3*c^3*d*b^2*arcsinh(c*x)*ln(1-c*x-(c^2*x^2+1)^(1/2))+5/3*b^2*c^3*d*polylog(2,c*
x+(c^2*x^2+1)^(1/2))-2*c^2*d*a*b*arcsinh(c*x)/x-2/3*d*a*b*arcsinh(c*x)/x^3-5/3*c^3*d*a*b*arctanh(1/(c^2*x^2+1)
^(1/2))-1/3*c*d*a*b/x^2*(c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -2 \,{\left (c \operatorname{arsinh}\left (\frac{1}{\sqrt{c^{2}}{\left | x \right |}}\right ) + \frac{\operatorname{arsinh}\left (c x\right )}{x}\right )} a b c^{2} d + \frac{1}{3} \,{\left ({\left (c^{2} \operatorname{arsinh}\left (\frac{1}{\sqrt{c^{2}}{\left | x \right |}}\right ) - \frac{\sqrt{c^{2} x^{2} + 1}}{x^{2}}\right )} c - \frac{2 \, \operatorname{arsinh}\left (c x\right )}{x^{3}}\right )} a b d - \frac{a^{2} c^{2} d}{x} - \frac{a^{2} d}{3 \, x^{3}} - \frac{{\left (3 \, b^{2} c^{2} d x^{2} + b^{2} d\right )} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right )^{2}}{3 \, x^{3}} + \int \frac{2 \,{\left (3 \, b^{2} c^{5} d x^{4} + 4 \, b^{2} c^{3} d x^{2} + b^{2} c d +{\left (3 \, b^{2} c^{4} d x^{3} + b^{2} c^{2} d x\right )} \sqrt{c^{2} x^{2} + 1}\right )} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right )}{3 \,{\left (c^{3} x^{6} + c x^{4} +{\left (c^{2} x^{5} + x^{3}\right )} \sqrt{c^{2} x^{2} + 1}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)*(a+b*arcsinh(c*x))^2/x^4,x, algorithm="maxima")

[Out]

-2*(c*arcsinh(1/(sqrt(c^2)*abs(x))) + arcsinh(c*x)/x)*a*b*c^2*d + 1/3*((c^2*arcsinh(1/(sqrt(c^2)*abs(x))) - sq
rt(c^2*x^2 + 1)/x^2)*c - 2*arcsinh(c*x)/x^3)*a*b*d - a^2*c^2*d/x - 1/3*a^2*d/x^3 - 1/3*(3*b^2*c^2*d*x^2 + b^2*
d)*log(c*x + sqrt(c^2*x^2 + 1))^2/x^3 + integrate(2/3*(3*b^2*c^5*d*x^4 + 4*b^2*c^3*d*x^2 + b^2*c*d + (3*b^2*c^
4*d*x^3 + b^2*c^2*d*x)*sqrt(c^2*x^2 + 1))*log(c*x + sqrt(c^2*x^2 + 1))/(c^3*x^6 + c*x^4 + (c^2*x^5 + x^3)*sqrt
(c^2*x^2 + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a^{2} c^{2} d x^{2} + a^{2} d +{\left (b^{2} c^{2} d x^{2} + b^{2} d\right )} \operatorname{arsinh}\left (c x\right )^{2} + 2 \,{\left (a b c^{2} d x^{2} + a b d\right )} \operatorname{arsinh}\left (c x\right )}{x^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)*(a+b*arcsinh(c*x))^2/x^4,x, algorithm="fricas")

[Out]

integral((a^2*c^2*d*x^2 + a^2*d + (b^2*c^2*d*x^2 + b^2*d)*arcsinh(c*x)^2 + 2*(a*b*c^2*d*x^2 + a*b*d)*arcsinh(c
*x))/x^4, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} d \left (\int \frac{a^{2}}{x^{4}}\, dx + \int \frac{a^{2} c^{2}}{x^{2}}\, dx + \int \frac{b^{2} \operatorname{asinh}^{2}{\left (c x \right )}}{x^{4}}\, dx + \int \frac{2 a b \operatorname{asinh}{\left (c x \right )}}{x^{4}}\, dx + \int \frac{b^{2} c^{2} \operatorname{asinh}^{2}{\left (c x \right )}}{x^{2}}\, dx + \int \frac{2 a b c^{2} \operatorname{asinh}{\left (c x \right )}}{x^{2}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c**2*d*x**2+d)*(a+b*asinh(c*x))**2/x**4,x)

[Out]

d*(Integral(a**2/x**4, x) + Integral(a**2*c**2/x**2, x) + Integral(b**2*asinh(c*x)**2/x**4, x) + Integral(2*a*
b*asinh(c*x)/x**4, x) + Integral(b**2*c**2*asinh(c*x)**2/x**2, x) + Integral(2*a*b*c**2*asinh(c*x)/x**2, x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c^{2} d x^{2} + d\right )}{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}^{2}}{x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)*(a+b*arcsinh(c*x))^2/x^4,x, algorithm="giac")

[Out]

integrate((c^2*d*x^2 + d)*(b*arcsinh(c*x) + a)^2/x^4, x)